Homework I

Due Date: 26/02/2024
Exercise 1. Find the general solution to the following equations.
(i) (1 point)

$$
x \partial_{x} u+y \partial_{y} u=x e^{-u} .
$$

(ii) (1 point)

$$
x\left(y^{2}+u\right) \partial_{x} u-y\left(x^{2}+u\right) \partial_{y} u=u\left(x^{2}-y^{2}\right)
$$

Exercise 2. Consider the following Cauchy problems.
(i) (1 point) Solve

$$
\left\{\begin{aligned}
\partial_{x} u+x \partial_{y} u & =y, \quad(x, y) \in \mathbb{R}^{2} \\
u(0, y) & =\cos y, \quad y \in \mathbb{R}
\end{aligned}\right.
$$

(ii) (1 point) Solve

$$
\left\{\begin{aligned}
u \partial_{x} u+y \partial_{y} u & =x, \quad(x, y) \in \mathbb{R}^{2}, \\
u(x, 1) & =2 x, \quad x \in \mathbb{R} .
\end{aligned}\right.
$$

Exercise 3. Consider the boundary value problem

$$
\left\{\begin{aligned}
\partial_{x} u+x \partial_{y} u & =0, \quad(x, y) \in \mathbb{R}^{2} \\
u(x, 0) & =f(x), \quad x \in \mathbb{R}
\end{aligned}\right.
$$

(i) (1 point) Show that f is an even function to ensure the existence of a solution. (ii) (1 point) Give the region of the $x y$-plane where the solution can be uniquely determined by the initial condition.

Exercise 4. For $t \in \mathbb{R}, x \in \mathbb{R}^{3}, v \in \mathbb{R}^{3}$, we consider the Cauchy problem,

$$
\partial_{t} f(t, x, v)+v \cdot \nabla_{x} f(t, x, v)=0
$$

with

$$
f(0, x, v)=f^{0}(x, v)
$$

(i) (1 point) Using the method of characteristics prove that for $f^{0} \in C^{1}\left(\mathbb{R}_{x}^{3} \times \mathbb{R}_{v}^{3}\right)$, this problem has a unique solution $f \in C^{1}\left(\mathbb{R}_{t} \times \mathbb{R}_{x}^{3} \times \mathbb{R}_{v}^{3}\right)$.
(ii) (2 point) Prove that if in addition for $1 \leq p \leq \infty, f^{0} \in L^{p}\left(\mathbb{R}_{x}^{3} \times \mathbb{R}_{v}^{3}\right)$ then for $t \in$ \mathbb{R}, we have $f(t) \in L^{p}\left(\mathbb{R}_{x}^{3} \times \mathbb{R}_{v}^{3}\right)$, where $f(t)$ denotes the function $(x, v) \mapsto f(t, x, v)$, and

$$
\|f(t)\|_{L^{p}\left(\mathbb{R}_{x}^{3} \times \mathbb{R}_{v}^{3}\right)}=\left\|f^{0}\right\|_{L^{p}\left(\mathbb{R}_{x}^{3} \times \mathbb{R}_{v}^{3}\right)} .
$$

(iii) (1 point) Assume that $f^{0} \in L^{1}\left(\mathbb{R}_{x}^{3}, L^{\infty}\left(\mathbb{R}_{v}^{3}\right)\right)$. Prove that we have for $t \neq 0$,

$$
\left|\int_{\mathbb{R}_{v}^{3}} f(t, x, v) d v\right| \leq \frac{1}{t^{3}}\left\|f^{0}\right\|_{L^{1}\left(\mathbb{R}_{x}^{3}, L^{\infty}\left(\mathbb{R}_{v}^{3}\right)\right)}
$$

